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Abstract

The trivial equilibrium of a van der Pol–Duffing oscillator with a nonlinear feedback control may lose its stability via

Hopf bifurcations, when the time delay involved in the feedback control reaches certain values. Nonresonant Hopf–Hopf

interactions may occur in the controlled van der Pol–Duffing oscillator when the corresponding characteristic equation has

two pairs of purely imaginary roots. With the aid of normal form theory and centre manifold theorem as well as a

perturbation method, the dynamic behaviour of the nonresonant co-dimension two bifurcation is investigated by studying

the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. In

the vicinity of the nonresonant Hopf bifurcation, the oscillator may exhibit the initial equilibrium solution, two periodic

solutions as well as a quasi-periodic solution on a two-dimensional torus, depending on the dummy unfolding parameters

and nonlinear terms. The analytical predictions are found to be in good agreement with the results of numerical integration

of the original delay differential equation.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The well-known van der Pol–Duffing oscillator has been shown to exhibit very rich dynamics including
chaotic, quasi-periodic and periodic behaviour [1–6]. Chaotic and quasi-periodic motions as well as large
amplitude vibrations may be undesirable and unwanted in many applications for the control of oscillations.
Much effort has been devoted to controlling the dynamics of van der Pol–Duffing oscillators, using a
nonlinear feedback control [7–9] or a delayed feedback control [10–14]. However, either unavoidable time
delays in the feedback path or deliberately implemented time delays in the controllers and actuators may
lead to complicated dynamics and induce instability of the controlled systems. Thus, a detailed study of
the effect of time delays on the dynamics of the controlled systems is a desirable task for the evaluation
of the control performance. The present paper is mainly focused on the underlying dynamics of a controlled
van der Pol–Duffing oscillator that follows a nonresonant co-dimension two bifurcation of Hopf–Hopf
interactions.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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An externally forced van der Pol–Duffing oscillator under a feedback control considered in the present
paper is of the form

€x� ðm� bx2Þ _xþ o2xþ ax3 ¼ e cosðO0tÞ þ f cðtÞ, (1)

where x is the displacement, o is the natural frequency, a is the coefficient of the nonlinear term, m40, b40, e

and O0 represent the amplitude and frequency of the external excitation, respectively, f cðtÞ is the feedback
control input, and an overdot indicates the differentiation with respect to time t. Without loss of generality, it
is assumed that the feedback control used is of a linear-plus-nonlinear characteristic, which takes the form of

f cðtÞ ¼ pxðt� tÞ þ q _xðt� tÞ þ k1x
3ðt� tÞ þ k2 _x

3ðt� tÞ þ k3 _xðt� tÞx2ðt� tÞ þ k4 _x
2ðt� tÞxðt� tÞ, (2)

where p and q are the proportional and derivative linear feedback gains, ki are the weakly nonlinear feedback
gains, and t denotes the time delay occurring in the feedback path. Only one time delay is considered here for
the sake of simplicity.

It was found that the trivial equilibrium of the corresponding autonomous system of Eq. (1) may change its
stability via a Hopf bifurcation if the time delay reaches certain values. When the corresponding characteristic
equation has two pairs of purely imaginary roots, it was shown that the trivial equilibrium of the autonomous
system may lose its stability via a subcritical or supercritical Hopf bifurcation and regain its stability via a
reverse subcritical or supercritical Hopf bifurcation as the time delay increases. There are a number of switches
between stability and instability of the trivial equilibrium, and the trivial equilibrium eventually becomes
unstable. A stable limit cycle appears after a supercritical Hopf bifurcation occurs and disappears through a
reverse supercritical Hopf bifurcation [15].

It is expected that an interaction of two Hopf bifurcations may occur when the two corresponding critical
time delays have the same value. The points of intersection of two Hopf bifurcations usually occur on the
boundary of the region of stability of the trivial equilibrium. Hence, intersections of Hopf bifurcations may
influence the observed behaviour of the system. Complicated behaviour may be expected to appear in the
neighbourhood of the intersection point. The primary objective of the present paper is to study the dynamics
of the controlled system in the vicinity of the point of intersection of nonresonant Hopf–Hopf bifurcations.
The present paper develops the existing relevant work in at least the following three aspects: (a) the variations
of the controller’s parameters (which are two linear feedback gains and time delay) in the vicinity of the
nonresonant co-dimension two bifurcation are introduced by three dummy perturbation parameters. These
perturbation parameters eventually determine the unfolding parameters of the normal forms of Hopf–Hopf
interactions. However, the unfolding parameters given in the published work were artificially added to the
normal forms of the degenerate system [16]. (b) The present paper gives a detailed analysis of the bifurcations
and possible solutions of the system in the neighbourhood of nonresonant Hopf bifurcations, while existing
works gave limited numerical results only [17]. (c) Illustrative examples are given to validate the analytical
predictions of the bifurcation solutions.

The present paper is organized into six parts. The existence of a double Hopf bifurcation is briefly reviewed
in Section 2 for the corresponding autonomous system. In Section 3, based on semigroups of transformations
and the decomposition theory, the delay differential equation in the neighbourhood of nonresonant Hopf
bifurcations is reduced to a set of four-dimensional (4D) nonlinear ordinary differential equations on the
centre manifold. The steady-state solutions of these ordinary differential equations are studied in Section 4
using a perturbation method. In Section 5, examples are given to illustrate the observed behaviour of a specific
system in the neighbourhood of the nonresonant co-dimension two bifurcation. The summary and discussion
are presented in Section 6.

2. Double Hopf bifurcation

The analysis is started from the corresponding autonomous system for which the external excitation is
neglected in Eq. (1), as an understanding of the dynamics of the autonomous system lays the foundation of
exploring the rich dynamic behaviour of the system with external forcing. The stability of the trivial
equilibrium and the resultant behaviour of the autonomous system that follows a nonresonant Hopf
bifurcation will be investigated using the centre manifold theorem and normal form theory as well as the
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method of multiple scales. The forced response of the non-autonomous system (1) in the vicinity of
nonresonant Hopf bifurcations is beyond the scope of the present work, but should be pursued further.
The corresponding autonomous system, obtained by letting e ¼ 0 in Eq. (1), is given by

€x� m _xþ o2x� pxðt� tÞ � q _xðt� tÞ þ bx2 _xþ ax3 � k1x
3ðt� tÞ � k2 _x

3ðt� tÞ

� k3 _xðt� tÞx2ðt� tÞ � k4 _x
2ðt� tÞxðt� tÞ ¼ 0. ð3Þ

It is easy to note that Eq. (3) has either one or three fixed points depending on the system parameters. If
ðo2 � pÞ=ðk1 � aÞ40, there are three fixed points, which are the trivial point, and two non-trivial fixed points
at �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo2 � pÞ=ðk1 � aÞ

p
. Otherwise, Eq. (3) has the trivial fixed point only. A discussion of the stability of the

trivial fixed point appears to be of interest. In fact, the stability characteristic of the non-trivial fixed points can
be investigated in a similar procedure by converting them into the trivial fixed point using a linear coordinate
transformation. To study the local stability of the trivial fixed point, it is usual to seek a candidate solution of
the form c expðltÞ, where c is a constant. Substitution of the candidate solution in the linearized part of Eq. (3)
leads to the following characteristic equation

l2 � mlþ o2 � pe�lt � qle�lt ¼ 0. (4)

The roots of the characteristic Eq. (4) are a function of the time delay, t. If there is no time delay involved in
the system, i.e., t ¼ 0, ensuring the stability of the trivial fixed point requires that qo� m and poo2. It will be
shown that these two inequalities cannot guarantee the stability of the trivial point of the controlled system
involving time delay. By the continuity of the solutions of Eq. (4), as the time delay increases, the purely
imaginary roots of Eq. (4) may appear while all the other eigenvalues have negative real parts. It is assumed
that a pair of purely imaginary eigenvalues of Eq. (4) occurs at l ¼ �id, where i ¼

ffiffiffiffiffiffiffi
�1
p

, and d is a real
positive number. Substituting l ¼ id in Eq. (4) and separating the real and imaginary parts yields

o2 � d2 � p cosðdtÞ � dq sinðdtÞ ¼ 0,

� mdþ p sinðdtÞ � qd cosðdtÞ ¼ 0. ð5Þ

Moving the trigonometric terms to the right-hand side of Eq. (5), squaring both sides of the resultant
equations and adding them together yields

ðo2 � d2Þ2 þ m2d2 ¼ p2 þ q2d2. (6)

Its roots are

d2� ¼
1

2
q2 � m2 þ 2o2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðp2 � o4Þ þ ð2o2 þ q2 � m2Þ2

q� �
. (7)

It is easy to note that dmay have one or two positive solutions depending on the system parameters. If p2
Xo4,

Eq. (4) has one pair of purely imaginary solutions only, which is given by l ¼ �idþ, with dþ40. The trivial
point of the system may lose its stability via a Hopf bifurcation. The direction and stability of the Hopf
bifurcation have been studied for single-degree-of-freedom nonlinear systems involving time delays [15,18–20].
As such this case is not discussed in the present paper.

If ðq2 � m2 þ 2o2Þ40, and ðm2 � q2Þðð1=4Þq2 � ð1=4Þm2 þ o2Þop2oo4, Eq. (4) has two pairs of purely
imaginary solutions, which are given by l� ¼ �id�, with dþ4d�40. Such a case is referred to here as a
double Hopf bifurcation, which can be regarded as a combination of two single Hopf bifurcations occurring
consecutively with an increase of time delay.

Two sets of the critical time delay tc corresponding to the two pairs of purely imaginary eigenvalues are
given by

t1c;n ¼
s1

dþ
þ

2np
dþ

; n ¼ 0; 1; 2 . . . , (8a)

where 0ps1o2p, sin s1 ¼ ðmpþ qo2 � qd2þÞdþ=p2 þ q2d2þ, cos s1 ¼ po2 � pd2þ � mqd2þ=p2 þ q2d2þ;
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and

t2c;n ¼
s2

d�
þ

2np
d�

, (8b)

where 0ps2o2p, sin s2 ¼ ðmpþ qo2 � qd2�Þd�=p2 þ q2d2�, cos s2 ¼ po2 � pd2� � mqd2�=p2 þ q2d2�.
The transversality condition for assuring the occurrence of a double Hopf bifurcation can be easily checked

by studying ðdt=dlÞ instead of ðdl=dtÞ. It is found by performing some algebraic manipulation that the real
part of ðdt=dlÞ at l ¼ id, namely Reðdt=dlÞjl¼id, is given by

Reðdt=dlÞjl¼id ¼
�q2

p2 þ q2d2
þ

m2 þ 2d2 � 2o2

m2d2 þ ðo2 � d2Þ2
. (9)

By inserting the expressions of d2�, it is easy to find that the quantity Reðdt=dlÞjl¼id is positive for d2þ and
negative for d2�, thereby confirming the transversality conditions for the occurrence of a double Hopf
bifurcation [21]. The crossing of the imaginary axis is from left to right as t increases to a certain value
corresponding to d+, and crossing from right to left occurs for the certain values of t corresponding to d�. For
clarity, the bifurcations occurring at points ðdþ; t1c;nÞ and ðd�; t2c;nÞ will be termed the first and second single
Hopf bifurcations, respectively. The frequencies of the first and second Hopf bifurcations, namely d01 and d02,
are then given by d01 ¼ dþ, d02 ¼ d�.

For a double Hopf bifurcation, it follows that t1c;0ot2c;0, since the multiplicities of the roots with positive real
parts of Eq. (4) can change only if a root appears on or crosses the imaginary axis as time delay t varies. As t
increases, the zero solution loses its stability whenever t passes through a certain value of t1c;n and the zero
solution regains its stability whenever t passes through a value of t2c;n. There are a finite number of switches
between the stability and instability of the zero solution, and the zero solution eventually become unstable.

When Eq. (4) has two pairs of purely imaginary eigenvalues, an intersection of the first and second Hopf
bifurcations may occur before the zero solution eventually becomes unstable. Points of intersection may be
given based on the fact that the two critical time delays related to two Hopf bifurcation frequencies d01 and d02
are identical. Such intersections generally occur in two cases, either nonresonant or resonant Hopf–Hopf
interactions, depending on the ratio of the two Hopf bifurcation frequencies. Resonant Hopf bifurcations may
occur when the two frequencies of Hopf bifurcations obey d01 : d02 ¼ m : n for some m; n 2 Z. The possible
points of the intersection of nonresonant and resonant Hopf bifurcations cannot be given in a closed form,
except when there are certain restrictions on the parameter values. The restrictions generally lead to simplified
systems, for example, as the case discussed in Ref. [22], in which the damping and a feedback gain were set to
be zero. Owing to a nonzero damping and two linear feedback gains involved in Eq. (3), more complicated
expressions have been derived for the critical time delays given by Eq. (8). For a given set of the system
parameters, the points of intersection of nonresonant and resonant Hopf bifurcations can be solved by a
numerical procedure only for the controlled system considered in the present paper.

As an illustrative example, consider a specific system with the parameters given by m ¼ 0:1, o ¼ 1:0, p ¼ �0:4,
a ¼ 0:4, b ¼ 0:5, k1 ¼ 0:2, k4 ¼ 0:5, k2 ¼ k3 ¼ 0:0. It is easy to find from Eq. (7) that the first and second Hopf
bifurcation frequencies are d01 ¼ 1:28038 and d02 ¼ 0:71582. Fig. 1 shows the variation of critical time delay tc

with the derivative feedback gain in the ðq; tÞ parameter plane. The curves, which are defined by Eq. (8) and
illustrated by the dotted lines and triangular lines in the figure, are indeed curves of the first and second Hopf
bifurcations. These curves divide the parameter space into several regions of the stability and instability of the
trivial solution. The stability and instability regions are indicated in Fig. 1 by the abbreviated terms ‘‘sts’’ and
‘‘uts’’, which stand for the stable and unstable trivial solutions, respectively. For a fixed derivative feedback gain,
the trivial solution remains stable until t reaches t1c;0 corresponding to the first Hopf bifurcation, and regains its
stability when t increases to t2c;0 relating to the second Hopf bifurcation. In such a way, the trivial fixed point
switches its stability and instability a finite number of times, and eventually become unstable. Two curves of
nonresonant Hopf bifurcations intersect at the point ðq; tÞ ¼ ð�0:40219; 5:46397Þ, where time delay t has the
same value on the two curves. The points of intersection of the two curves are usually referred to as the co-
dimension two bifurcation points and can be a source of more complicated dynamics.

It was numerically found that the system defined by Eq. (3) may also possess points of intersection of
resonant Hopf–Hopf bifurcations. For example, two-to-one resonances of Hopf–Hopf interactions may
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Fig. 1. Region of stability and instability of the trivial equilibrium for the case of a double Hopf bifurcation. The dotted lines represent the

first Hopf bifurcations and the triangular lines stand for the second Hopf bifurcations.
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appear at the point ðq; tÞ ¼ ð�0:269; 2:45595Þ for a set of the system parameters given by m ¼ 0:005, o ¼ 2:1,
p ¼ �2:6. The frequencies of two Hopf bifurcations were numerically found from Eq. (7) to be d01 ¼ 2:66591,
d02 ¼ 1:33614, respectively. The ratio of these two frequencies is given by d01 : d02 ¼ 1:99522, which is nearly
equal to 2. The point of intersection of two Hopf bifurcations occurs at t1c;1 ¼ t2c;0. More complicated
behaviour may be expected at such a point of resonant co-dimension two bifurcations. A two-to-one resonant
Hopf–Hopf interaction occurring in the controlled system will be the topic of future research.
3. Construction of the centre manifold

For simplicity, it is assumed that an intersection of nonresonant Hopf bifurcations occurs at the point
ðp0; q0; t0Þ, where Eq. (4) has two pairs of purely imaginary roots �id01, �id02, and all other roots have
negative real parts. In order to study the periodic solutions resulting from an interaction of two Hopf
bifurcations in the neighbourhood of the bifurcation point ðp0; q0; t0Þ, three small perturbation parameters
(namely, a1, a2 and a3) are introduced in terms of p ¼ p0 þ a1, q ¼ q0 þ a2, t ¼ t0 þ a3. These perturbation
parameters can easily account for the small variations of the linear feedback gains and time delay. At this
stage, the perturbation parameters act as three dummy unfolding parameters. It will be shown that these
dummy perturbation parameters determine two unfolding parameters in the normal forms of the nonresonant
co-dimension two bifurcation.

Introducing the three dummy parameters defined above and letting y1 ¼ x, y2 ¼ _x in Eq. (3) yields the
following two first-order equations

_y1 ¼ y2;

_y2 ¼ �o
2y1 þ my2 þ p0y1ðt� tÞ þ q0y2ðt� tÞ þ f aðyðtÞÞ � f tðyÞ þ f tðyðtÞÞ;

(10)

where y1ðtÞ and y2ðtÞ have been written here as y1 and y2 for simplicity,

f aðyðtÞÞ ¼ a1y1ðt� tÞ þ a2y2ðt� tÞ; f tðyÞ ¼ by2
1y2 þ ay3

1;

f tðyðtÞÞ ¼ k1y
3
1ðt� tÞ þ k2y3

2ðt� tÞ þ k3y2
1ðt� tÞy2ðt� tÞ þ k4y1ðt� tÞy2

2ðt� tÞ:

By normalizing time in the units of the delay in terms of t ¼ t̄t with t ¼ t0 þ a3, Eq. (10) may be rewritten in
the following form (which explicitly involves the three dummy unfolding parameters)

y01 ¼ t0y2 þ a3y2,
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y02 ¼ � o2t0y1 þ mt0y2 þ p0t0y1ðt� 1Þ þ q0t0y2ðt� 1Þ � a3o2y1 þ a3my2

þ a3p0y1ðt� 1Þ þ a3q0y2ðt� 1Þ þ ðt0 þ a3Þ½f aðyð1ÞÞ � f tðyÞ þ f tðyð1ÞÞ�, ð11Þ

where f tðyÞ ¼ by2
1y2 þ ay3

1,

f aðyð1ÞÞ ¼ a1y1ðt� 1Þ þ a2y2ðt� 1Þ;

f tðyð1ÞÞ ¼ k1y3
1ðt� 1Þ þ k2y3

2ðt� 1Þ þ k3y
2
1ðt� 1Þy2ðt� 1Þ þ k4y1ðt� 1Þy2

2ðt� 1Þ

and a prime indicates the differentiation with respect to the new time t̄ whose above bar has been removed here
for brevity. For the perturbation system defined by Eq. (11), the two Hopf bifurcation frequencies, namely d1
and d2, are now given by d1 ¼ t0d01, d2 ¼ t0d02.

By letting _yðtÞ ¼ ½y01; y
0
2�
T, yðtÞ ¼ ½y1; y2�

T, yðt� 1Þ ¼ ½y1ðt� 1Þ; y2ðt� 1Þ�T, where the superscript ‘‘T’’
denotes the transpose, Eq. (11) can be re-written as

_yðtÞ ¼ L0yðtÞ þ L1yðt� 1Þ þ ½f 0ðyðtÞÞ þ f 1ðyðt� 1ÞÞ�, (12)

where

L0 ¼
0 t0

�t0o2 t0m

" #
; L1 ¼

0 0

t0p0 t0q0

" #
,

f 0ðyðtÞÞ ¼
a3y2

�a3o2y1 þ a3my2 � ðt0 þ a3Þf tðyÞ

" #
,

f 1ðyðt� 1ÞÞ ¼
0

a3p0y1ðt� 1Þ þ a3q0y2ðt� 1Þ þ ðt0 þ a3Þ½f aðyð1ÞÞ þ f tðyð1ÞÞ�

" #
.

Let B ¼ Cð½�1; 0�;R2Þ, L : B! R2 be a continuous linear operator and GðytÞ : R2! R2 be a nonlinear
smooth operator, then Eq. (12) can be expressed as an abstract form on the Banach space

_yðtÞ ¼ Lyt þ GðytÞ, (13)

where yt 2 B is defined by the shift of time as ytðyÞ ¼ yðtþ yÞ with y 2 ½�1; 0�. The linear operator may be
expressed in integral form as

Lf ¼
Z 0

�1

½dZðyÞ�fðyÞ,

where f is a given function on the space B, Z : ½�1; 0� ! R2 is a 2� 2 matrix-valued function with bounded
variation and is continuous in y on ½�1; 0Þ. The function Z of bounded variation in the definition of L is given
by ZðyÞ ¼ 0 for yX0, ¼ L0 for �1oyo0, ¼ L0 þ L1 for yp� 1 [23,24].

The nonlinear smooth operator GðytÞ can be defined by

GðytÞðyÞ ¼
0;

f 0ðyðtÞÞ þ f tðyðt� 1ÞÞ;

y 2 ½�1; 0Þ;

y ¼ 0:

(

The infinitesimal generator A of the continuous semi-flow generated by the linear operator in Eq. (13) assumes
the form

AfðyÞ ¼
dfðyÞ=dy;

L0fð0Þ þ L1fð�1Þ;

(
y 2 ½�1; 0Þ;

y ¼ 0:
(14)

Let P be the invariant space for the infinitesimal generator A associated with two pairs of purely imaginary
eigenvalues, �id1, �id2. In accordance with the decomposition theorem (Chapter 7 in Ref. [24]), the space B

can be split into two disjoint subspaces P, Q as B ¼ P�Q, where Q is the complimentary subspace spanned
by the eigenvalues with negative real parts. The centre subspace P of the associated linear problem can be
spanned by the real and imaginary parts of the complex eigenvectors fðyÞ. The basis matrix FðyÞ for the space
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P is found to be

FðyÞ ¼ ðf1;f2;f3;f4Þ

¼
cosðd1yÞ sinðd1yÞ cosðd2yÞ sinðd2yÞ

�d01 sinðd1yÞ d01 cosðd1yÞ �d02 sinðd2yÞ d02 cosðd2yÞ

 !
ð15Þ

such that the matrix satisfies dF=dy ¼ FJ, where

J ¼

0 d1 0 0

�d1 0 0 0

0 0 0 d2
0 0 �d2 0

2
6664

3
7775.

Let B1 ¼ Cð½0; 1�;R2Þ, and cðsÞ be a row-valued generalized eigenfunction of the adjoint operator of A. The
adjoint bilinear form on B� B1 is defined by [25]

ðc;fÞ ¼ cð0Þfð0Þ �
Z 0

�1

cðsþ 1ÞL1fðsÞds. (16)

The basis CðsÞ ¼ colðc1;c2;c3;c4Þ for the dual space in B1 can be explicitly obtained using C ¼ ðFT;
FÞ�1FT, so that ðC;FÞ is a 4� 4 identity matrix.

The function ðFT;FÞ can be obtained based on the bilinear relation of the inner product matrix

ðFT;FÞ ¼

ðfT
1 ;f1Þ ðf

T
1 ;f2Þ ðf

T
1 ;f3Þ ðf

T
1 ;f4Þ

ðfT
2 ;f1Þ ðf

T
2 ;f2Þ ðf

T
2 ;f3Þ ðf

T
2 ;f4Þ

ðfT
3 ;f1Þ ðf

T
3 ;f2Þ ðf

T
3 ;f3Þ ðf

T
3 ;f4Þ

ðfT
4 ;f1Þ ðf

T
4 ;f2Þ ðf

T
4 ;f3Þ ðf

T
4 ;f4Þ

0
BBBB@

1
CCCCA ¼

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA, (17)

where a11 ¼
1
2ð2� md201t0 � q0d01 sin d1Þ,

a12 ¼
1
2
ðd301t0 � d01t0o2 þ p0 sin d1Þ,

a13 ¼
1

d21 � d22
½q0d01d2ðd2 sin d1 � d1 sin d2Þ þ p0ðcos d1 � cos d2Þd

2
1 þ d21 � d22�,

a14 ¼
1

d21 � d22
½p0d1ðd1 sin d2 � d2 sin d1Þ þ ðcos d1 � cos d2Þq0d

2
1d02�,

a21 ¼
1
2
ðd01t0o2 � d301t0 þ p0 sin d1Þ,

a22 ¼
1
2
ð2d201 � md201t0 þ q0d01 sin d1Þ

and the other 10 coefficients a232a44 are not given in the present paper for clarity.
It is found after performing some algebraic manipulations that the basis Cð0Þ to be needed for the

subsequent analysis can be given by

Cð0Þ ¼

b11 b12

b21 b22

b31 b32

b41 b42

2
6664

3
7775, (18)
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where b11 ¼ d11 þ d13, b12 ¼ d01d12 þ d02d14, b21 ¼ d21 þ d23, b22 ¼ d01d22 þ d02d24, b31 ¼ d31 þ d33,
b32 ¼ d01d32 þ d02d34, b41 ¼ d41 þ d43, b42 ¼ d01d42 þ d02d44 with

d11 ¼
1

D
ða23a34a42 � a24a33a42 þ a24a32a43 � a22a34a43 þ a22a33a44 � a23a32a44Þ,

d12 ¼
1

D
ða14a33a42 � a13a34a42 þ a12a34a43 � a14a32a43 þ a13a32a44 � a12a33a44Þ,

d13 ¼
1

D
ða13a24a42 � a14a23a42 þ a14a22a43 � a12a24a43 þ a12a23a44 � a13a22a44Þ,

d14 ¼
1

D
ða14a23a32 � a13a24a32 þ a12a24a33 � a14a22a33 þ a13a22a34 � a12a23a34Þ,

the symbol D stands for the determinant of the matrix ðFT;FÞ given by Eq. (17), and the other 12 coefficients,
d212d44, are not given here for brevity.

The centre manifold theorem assumes that the dynamic behaviour of orbits of Eq. (13) in B at the origin can
be split into stable and centre manifolds. The flow on the centre manifold, which is tangent to the invariant
space P associated with two pairs of purely imaginary eigenvalues, is given by yt ¼ FzðtÞ þ hðzðtÞ;F Þ, where
zðtÞ ¼ ðz1; z2; z3; z4Þ

T, hðz;F Þ 2 Q for each z and is a Cr�1 function of z. In terms of the coordinates, z, the
solution of Eq. (13), yt, can be expressed as

y1ðtÞ

y2ðtÞ

 !
¼

z1 þ z3

z2d01 þ z4d02

 !
,

y1ðt� 1Þ

y2ðt� 1Þ

 !
¼

z1 cos d1 � z2 sin d1 þ z3 cos d2 � z4 sin d2

z1d01 sin d1 þ z2d01 cos d1 þ z3d02 sin d2 þ z4d02 cos d2

 !
. ð19Þ

The local coordinates on the centre manifold are given by the following 4D ordinary differential equations:

_z ¼ JzþCð0ÞGðFzþ hðz;F ÞÞ. (20)

Substitution of Eqs. (18) and (19) in Eq. (20) gives rise to

_z ¼

l11 d1 þ l12 l13 l14

�d1 þ l21 l22 l23 l24

l31 l32 l33 d2 þ l34

l41 l42 �d2 þ l43 l44

2
6664

3
7775

z1

z2

z3

z4

0
BBB@

1
CCCAþ

b12

b22

b32

b42

2
6664

3
7775NLT, (21)

where the term NLT represents the nonlinear terms, li1 ¼ bi2b210, li2 ¼ bi1b120 þ bi2b220, li3 ¼ bi2b230,
li4 ¼ bi1b140 þ bi2b240, i ¼ 1; 2; 3; 4 with b120 ¼ a3d01, b140 ¼ a3d02,

b210 ¼ �a3o2 þ ða1t0 þ a3p0 þ a1a3Þ cos d1 þ ða2d01t0 þ a3d01q0 þ a2a3d01Þ sin d1,

b220 ¼ ma3d01 þ ða2d01t0 þ q0a3d01 þ a2a3d01Þ cos d1 � ðt0a1 þ p0a3 þ a1a3Þ sin d1,

b230 ¼ �a3o2 þ ða1t0 þ a3p0 þ a1a3Þ cos d2 þ ða2d2 þ a3d02q0 þ a2a3d02Þ sin d2,

b240 ¼ ma3d02 þ ða2d2 þ q0a3d02 þ a2a3d02Þ cos d2 � ðt0a1 þ p0a3 þ a1a3Þ sin d2.

The nonlinear function, NLT, which consists of 20 terms of the third order, is given by

NLT ¼ a111z
3
1 þ a112z21z2 þ a113z

2
1z3 þ a114z

2
1z4 þ a122z1z

2
2 þ a123z1z2z3 þ a124z1z2z4

þ a133z1z
2
3 þ a134z1z3z4 þ a144z1z

2
4 þ a222z32 þ a223z22z3 þ a224z22z4 þ a233z2z23

þ a234z2z3z4 þ a244z2z
2
4 þ a333z33 þ a334z23z4 þ a344z3z

2
4 þ a444z34, ð22Þ

where a111 ¼ ðt0 þ a3Þ½�aþ k1 cos
3 d1 þ k2d

3
01 sin

3 d1 þ ðk3 þ k4Þd01 sin d1 cos2 d1�, the other 19 coefficients
a1122a444 can also be expressed in terms of the system parameters and two Hopf bifurcation frequencies as
well as the corresponding critical time delay. For brevity, they are not reproduced here.
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4. Solutions of co-dimension two bifurcation and their stability

The solutions of Eq. (21) will be approximately obtained using the method of multiple scales [26,27]. The
dynamic behaviour of the system in the neighbourhood of the point of the nonresonant co-dimension two
bifurcation will be studied based on a set of four averaged equations that determine the amplitudes and phases
of the bifurcating periodic solutions. Eq. (21) can be rewritten in the component form as

_z1 ¼ l11z1 þ ðd1 þ l12Þz2 þ l13z3 þ l14z4 þ f 10ðzÞ,

_z2 ¼ ð�d1 þ l21Þz1 þ l22z2 þ l23z3 þ l24z4 þ f 20ðzÞ,

_z3 ¼ l31z1 þ l32z2 þ l33z3 þ ðd2 þ l3Þz4 þ f 30ðzÞ,

_z4 ¼ l41z1 þ l42z2 þ ð�d2 þ l43Þz3 þ l44z4 þ f 40ðzÞ, ð23Þ

where f 10ðzÞ ¼ b12NLT, f 20ðzÞ ¼ b22NLT, f 30ðzÞ ¼ b32NLT, f 40ðzÞ ¼ b42NLT.
It is assumed that the solutions of Eq. (23) in the neighbourhood of the trivial equilibrium are represented

by an expansion of the form

ziðt; eÞ ¼ e1=2zi1ðT0;T1; . . .Þ þ e3=2zi2ðT0;T1; . . .Þ þ � � � ði ¼ 1; 2; 3; 4Þ. (24)

where e is a non-dimensional small parameter, and the new multiple independent variables of time are
introduced according to Tk ¼ ekt, k ¼ 0; 1; 2; . . . : It follows that the derivatives with respect to t now become
expansions in terms of the partial derivatives with respect to Tk given by

d

dt
¼

dT0

dt

q
qT0
þ

dT1

dt

q
qT1
þ

dT2

dt

q
qT2
þ � � � ¼ D0 þ eD1 þ e2D2 þ � � � , (25)

where the differentiation operator Dk ¼ q=qTk.
Substituting the approximate solutions (24) into Eq. (23) and then balancing the like powers of e results in

the following ordered perturbation equations:

e1=2 : D0z11 ¼ d1z21, (26)

D0z21 ¼ �d1z11, (27)

D0z31 ¼ d2z41, (28)

D0z41 ¼ �d2z31, (29)

e3=2 : D0z12 ¼ g11ðz11; z21; z31; z41Þ þ d1z22 �D1z11 þ f 11ðz11; z21; z31; z41Þ, (30)

D0z22 ¼ g21ðz11; z21; z31; z41Þ � d1z12 �D1z21 þ f 21ðz11; z21; z31; z41Þ (31)

D0z32 ¼ g31ðz11; z21; z31; z41Þ þ d2z42 �D1z31 þ f 31ðz11; z21; z31; z41Þ, (32)

D0z42 ¼ g41ðz11; z21; z31; z41Þ � d2z32 �D1z41 þ f 41ðz11; z21; z31; z41Þ, (33)

where D0 ¼ q=qT0, D1 ¼ q=qT1, the coefficients of the perturbation linear terms lij in Eq. (23) have been
rescaled in terms of lij ¼ el̄ ij and the overbars in l̄ ij have been removed for brevity. The four linear functions of
zi1ði ¼ 1; 2; 3; 4Þ, namely g11, g21, g31 and g41, are given by

g11 ¼ l11z11 þ l12z21 þ l13z31 þ l14z41; g21 ¼ l21z11 þ l22z21 þ l23z31 þ l24z41,

g31 ¼ l31z11 þ l32z21 þ l33z31 þ l34z41; g41 ¼ l41z11 þ l42z21 þ l43z31 þ l44z41

and the f i1 are nonlinear functions of zi1ði ¼ 1; 2; 3; 4Þ which have been solved from the perturbation
Eqs. (26)–(29).

Differentiating Eqs. (26) and (28) and substituting Eqs. (27) and (29) into the resulting equations yields two
second-order ordinary differential equations

D2
0z11 þ d21z11 ¼ 0, (34)
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D2
0z31 þ d22z31 ¼ 0. (35)

The solutions of Eqs. (34) and (35) can be written in a general form as

z11 ¼ r1ðT1Þ cos½d1T0 þ f1ðT1Þ� � r1 cos y1, (36)

z31 ¼ r2ðT1Þ cos½d2T0 þ f2ðT1Þ� � r2 cos y2, (37)

where r1, r2, f1, f2 represent, respectively, the amplitudes and phases of the bifurcating periodic solutions. The
solutions, z21 and z41, which can be directly obtained by Eqs. (26) and (28), are given by

z21 ¼ �r1 sinðd1T0 þ f1Þ ¼ �r1 sin y1, (38)

z41 ¼ �r2 sinðd2T0 þ f2Þ ¼ �r2 sin y2. (39)

Note that solutions (36)–(39) imply that D0r1 ¼ D0r2 ¼ 0, and D0f1 ¼ D0f2 ¼ 0.
Similarly, differentiating Eqs. (30) and (32) and then substituting Eqs. (31) and (33) into the resultant

equations results in

D2
0z12 þ d21z12 ¼ D0g11 �D0D1z11 þD0f 11 þ d1g21 � d1D1z21 þ d1f 21, (40)

D2
0z32 þ d22z32 ¼ D0g31 �D0D1z31 þD0f 31 þ d2g41 � d2D1z41 þ d2f 41. (41)

Substituting solutions (36)–(39) into the right-hand sides of Eqs. (40)–(41) and then eliminating the possible
secular terms which may appear in the solutions of z12 and z32, gives D1r1, D1r2, D1f1 and D1f2 as

D1r1 ¼ m1r1 þ s11r31 þ s12r1r
2
2,

D1r2 ¼ m2r2 þ s21r21r2 þ s22r32,

D1f1 ¼ r1 þ s31r21 þ s32r22,

D1f2 ¼ r2 þ s41r21 þ s42r22, ð42Þ

where m1 ¼ 1=2ðl11 þ l22Þ, m2 ¼ 1=2ðl33 þ l44Þ,

s11 ¼
1
8
ð3a111b12 þ a122b12 þ a112b22 þ 3a222b22Þ,

s12 ¼
1
4
ða133b12 þ a144b12 þ a233b22 þ a244b22Þ,

s21 ¼
1
4
ða113b32 þ a223b32 þ a114b42 þ a224b42Þ,

s22 ¼
1
8
ð3a333b32 þ a344b32 þ a334b42 þ 3a344b42Þ,

r1 ¼
1
2
ðl12 � l21Þ;r2 ¼

1
2
ðl34 � l43Þ,

s31 ¼
1
8
ða112b12 þ 3a222b12 � 3a111b22 � a122b22Þ,

s32 ¼
1
4
ða233b12 þ a244b12 � a133b22 � a144b22Þ,

s41 ¼
1
4
ða114b32 þ a224b32 � a113b42 � a223b42Þ,

s42 ¼
1
8
ða334b32 þ 3a344b32 � 3a333b42 � a344b42Þ.

The averaged equations that determine the amplitudes and phases of the bifurcating periodic solutions can be
written as

dr1

dt
¼

qr1

qT0

qT0

qt
þ

qr1

qT1

qT1

qt
¼ D0r1 þ eD1r1 ¼ D1r1,

df1

dt
¼

qf1

qT0

qT0

qt
þ

qf1

qT1

qT1

qt
¼ D0f1 þ eD1f1 ¼ D1f1,

dr2

dt
¼

qr2

qT0

qT0

qt
þ

qr2

qT1

qT1

qt
¼ D0r2 þ eD1r2 ¼ D1r2,

df2

dt
¼

qf2

qT0

qT0

qt
þ

qf2

qT1

qT1

qt
¼ D0f2 þ eD1f2 ¼ D1f2, ð43Þ

where it has been set that e ¼ 1.
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Based on Eq. (43), the explicit formulae of the normal forms of the nonresonant co-dimension two
bifurcation of Hopf–Hopf interactions are expressed as

_r1 ¼ �m1r1 þ s11r31 þ s12r1r
2
2, (44)

_r2 ¼ �m2r2 þ s21r21r2 þ s22r32, (45)

_y1 ¼ d1 þ r1 þ s31r21 þ s32r22, (46)

_y2 ¼ d2 þ r2 þ s41r21 þ s42r22. (47)

The two unfolding parameters, m1 and m2, are reproduced here in terms of the three dummy parameters as

m1 ¼ h11a1 þ h12a2 þ h13a3,

m2 ¼ h21a1 þ h22a2 þ h23a3,

where

h11 ¼ �
t0
2
ðb12 cos d1 � b22 sin d1Þ; h12 ¼ �

d1
2
ðb12 sin d1 þ b22 cos d1Þ,

h13 ¼
1
2

b12ðo2 � p0 cos d1 � q0d01 sin d1Þ � b21d01 � b22ðmd01 � p0 sin d1 þ q0d01 cos d1Þ
� �

,

h21 ¼ �
t0
2
ðb32 cos d2 � b42 sin d2Þ; h22 ¼ �

d2
2
ðb32 sin d2 þ b42 cos d2Þ,

h23 ¼
1
2

b32ðo2 � p0 cos d2 � q0d02 sin d2Þ � b41d02 � b42ðmd02 � p0 sin d2 þ q0d02 cos d2Þ
� �

.

It is shown that the two unfolding parameters are characterized by the system parameters and dummy
perturbation parameters. The derivation of the unfolding parameters distinguishes from the existing work [16],
where the universal unfolding was given based on the normal forms of the degenerate system. Merits of the
unfolding parameters obtained here are two-fold. First of all, it is easy to locate the region of the dummy
perturbation parameters where the different behaviour may appear in the vicinity of the co-dimension two
bifurcation. The analytically obtained values of the dummy perturbation parameters can be served as a guide
to perform the numerical integration of the original equation. The results of numerical integration can be in
turn used to validate the analytical predictions. Second, due to the fact that the unfolding parameters are
closely related to the physical perturbation parameters, the effect of variations of the controlled parameters on
the observed behaviour of the controlled system can be easily studied by simply changing the values of the
dummy parameters on the boundary of the stability region of the fixed point.

The behaviour of a similar system to that defined by Eqs. (44)–(47) has been studied by considering 12
different cases, depending on the values of the unfolding parameters and cubic coefficients [28]. The detailed
bifurcations and dynamics for each case are not reproduced here in the unfolding parameters ðm1; m2Þ plane. In
the next section, the steady-state solutions and their stability will be studied and interpreted by illustrative
examples in terms of the dummy perturbation parameters ða1; a2Þ. Here, the dynamics of Eqs. (44)–(47) is
understood by finding the fixed points and studying the nature of their stability. The fixed points are obtained
by setting _r1 ¼ _r2 ¼ 0 in Eqs. (44) and (45). It is easy to note that ðr1; r2Þ ¼ ð0; 0Þ is always an equilibrium and
that up to three other equilibria can appear as follows:

ðr1; r2Þ ¼

ffiffiffiffiffiffi
m1
s11

r
; 0

� �
for

m1
s11

40,

ðr1; r2Þ ¼ 0;

ffiffiffiffiffiffi
m2
s22

r� �
for

m2
s22

40,

ðr1; r2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12m2 � s22m1
s12s21 � s11s22

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21m1 � s11m2
s12s21 � s11s22

r� �
for

s12m2 � s22m1
s12s21 � s11s22

40;
s21m1 � s11m2
s12s21 � s11s22

40. (48)
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For simplicity, the above solutions will be referred to here as solutions S1, S2, S3 and S4, respectively. In
particular, solution S1 is the initial equilibrium of the corresponding autonomous system. Solution S2 is the
periodic solution with the frequency resulting from the first Hopf bifurcation, which is given by

oH1 ¼ d1 þ r1 þ
m1s31
s11

. (49)

Solution S3 is the periodic solution resulting from the second Hopf bifurcation with the frequency being

oH2 ¼ d2 þ r2 þ
m2s42
s22

. (50)

Solution S4 is a quasi-periodic motion with two frequencies of an irrational ratio being

oH1 ¼ d1 þ r1 þ
ðs21s32 � s22s31Þm1 þ ðs12s31 � s11s32Þm2

s12s21 � s11s22
,

oH2 ¼ d2 þ r2 þ
ðs21s42 � s22s41Þm1 þ ðs12s41 � s11s42Þm2

s12s21 � s11s22
. (51)

The stability of these four solutions can be examined by studying the eigenvalues of the corresponding
Jacobian matrix. The Jacobian matrix of Eqs. (44) and (45) takes the form

J ¼
�m1 þ 3s11r21 þ s12r22 2s12r1r2

2s21r1r2 �m2 þ s21r21 þ 3s22r22

" #
. (52)

It is easy to find that the stability conditions for the initial equilibrium, solution S1, are

m140; m240. (53)

The stability conditions for solution S2 are

m1o0; s21m1os11m2. (54)

The stability conditions for solution S3 are

m2o0; s12m2os22m1. (55)

The two-dimensional (2D) torus solution, solution S4, is asymptotically stable if the following two inequalities
hold:

s11r21o� s22r22; s12s21os11s22. (56)

A quasi-periodic motion on a three-dimensional (3D) torus may appear after a quasi-periodic solution on a
2D torus loses its stability via a Neimark–Sacker bifurcation. The quasi-periodic motion on a 3D torus can be
viewed as a motion by adding a third periodic motion to the 2D quasi-periodic motion.

On the basis of the above analysis, it is easy to note that the possible solutions of the corresponding
autonomous system in the neighbourhood of the nonresonant co-dimension two bifurcation of Hopf–Hopf
interactions may be the initial equilibrium solution, the first Hopf bifurcation solution with frequency oH1, the
second Hopf bifurcation solution with frequency oH2, a 2D torus solution with frequencies oH1 and oH2, as
well as the quasi-periodic solution on a 3D torus, which results from a quasi-periodic solution on a 2D torus
losing its stability via a Neimark–Sacker bifurcation. The above discussion is for the general system defined by
Eqs. (44)–(47). For a specific system, the dynamics of the system will be discussed numerically in the next
section for a given set of the system parameters.

5. Illustrative examples

The explicit expressions for the normal forms of the nonresonant co-dimension two bifurcation of
Hopf–Hopf interactions can be re-written in terms of the three dummy unfolding parameters a1, a2, and a3 as

_r1 ¼ ðh11a1 þ h12a2 þ h13a3Þr1 þ s11r31 þ s12r1r22,
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_r2 ¼ ðh21a1 þ h22a2 þ h23a3Þr2 þ s21r21r2 þ s22r32,

_y1 ¼ d1 þ h31a1 þ h32a2 þ h33a3 þ s31r21 þ s32r22,

_y2 ¼ d2 þ h41a1 þ h42a2 þ h43a3 þ s41r21 þ s42r22, (57)

where the six coefficients h312h43 are determined by the system parameters and dummy perturbation
parameters. For brevity, they are not reproduced here.

The solutions of Eq. (57) and their stability characteristics can be studied by a similar procedure that was
developed based on Eqs. (44)–(47). It is found that the trivial equilibrium of the autonomous system may lose
its stability via a supercritical or subcritical single Hopf bifurcation and regains its stability via a reverse
supercritical or subcritical single Hopf bifurcation with an increase of time delay. Hence, the system defined by
Eq. (3) may exhibit two types of Hopf–Hopf interactions; namely, supercritical–supercritical interactions and
subcritical–subcritical interactions. As discussed in Fig. 1, for the specific system with the parameters given by
m ¼ 0:1, o ¼ 1:0, p ¼ �0:4, a ¼ 0:4, b ¼ 0:5, k1 ¼ 0:2, k2 ¼ k3 ¼ 0:0, k4 ¼ 0:5, q ¼ �0:402189, the two
frequencies of nonresonant Hopf bifurcations were found to be d01 ¼ 1:28038 and d02 ¼ 0:71582. It was also
found that the first single Hopf bifurcation is supercritical and the second single Hopf bifurcation is a reverse
supercritical bifurcation. The calculation showed that a double Hopf bifurcation point occurs at t1c;1 ¼ t2c;0,
as defined in Eq. (8), where two curves of the first and second Hopf bifurcations intersect at the point
ðq; tÞ ¼ ð�0:402189; 5:46397Þ. The point of the intersection of nonresonant Hopf bifurcations is an interaction
of supercritical–supercritical Hopf bifurcations. For this specific system, Eq. (57) becomes

_r1 ¼ �ð1:48776a1 þ 0:454302a2Þr1 � 0:23349r31 � 0:047818r1r22,

_r2 ¼ �ð0:44829a1 þ 1:38577a2Þr2 � 1:51265r21r2 � 0:693171r32,

_y1 ¼ 6:99593þ 0:35482a1 � 1:9049a2 þ 0:55454r21 þ 1:00912r22,

_y2 ¼ 3:9112þ 1:93592a1 � 0:320894a2 þ 1:72255r21 þ 0:588559r22. ð58Þ

Here, the third dummy parameter has been set a3 ¼ 0:0. If let either a1 ¼ 0:0 or a2 ¼ 0:0 in Eq. (57), the
perturbation parameter a3 will be involved in the resultant averaged equation and thus the influence of time
delay on the behaviour of the system can be easily studied in a similar procedure.

The steady-state solutions of Eq. (58) can be easily found as follows: Solution S1, the initial equilibrium
solution described by

r1 ¼ r2 ¼ 0:0. (59)

Solution S2, the first Hopf bifurcation solution given by

r1 ¼ 2:06949
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1:48776a1 � 0:454302a2

p
; r2 ¼ 0,

oH1 ¼ 6:99593� 3:17861a1 � 2:98386a2. (60)

Solution S3, the second Hopf bifurcation solution determined by

r1 ¼ 0; r2 ¼ 1:2011
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:44829a1 � 1:38577a2

p
,

oH2 ¼ 3:9112þ 1:55529a1 � 1:49752a2. (61)

Solution S4, the quasi-periodic solution on a 2D torus with the amplitudes and frequencies being

r1 ¼ 3:3423
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1:00984a1 � 0:248644a2

p
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23:9705a1 þ 4:06213a2

p
,

oH1 ¼ 6:99593þ 18:2881a1 þ 0:65397a2,

oH2 ¼ 3:9112� 9:03983a1 � 2:71464a2. ð62Þ
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The stable region for solution S1 is

0:44829a1 þ 1:38577a240,

1:48776a1 þ 0:454302a240. ð63Þ

The stability conditions for solution S2 are given by

1:48776a1 þ 0:454302a2o0,

4:595a1 þ 0:778685a2o0. ð64Þ

It is noted that the first inequality violates the second condition given in Eq. (63) for a stable solution of S1.
This suggests that solution S2 appears after solution S1 loses its stability.

The stability conditions for solution S3 are

0:44829a1 þ 1:38577a2o0,

1:45684a1 þ 0:358705a240. ð65Þ

The first inequality given by Eq. (63) is contradictory to the first condition given in Eq. (65), which suggests
solution S3 bifurcating from solution S1.

The stability conditions for solution S4 can be obtained by evaluating the trace and determinant of the
corresponding Jacobian matrix. Ensuring the stability of solution S4 requires

13:9817a1 þ 2:16721a240,

ð1:00984a1 þ 0:248644a2Þð23:9705a1 þ 4:06213a2Þo0. ð66Þ

It is easy to note from Eq. (62) that the second inequality in Eq. (66) is automatically satisfied as long as
solution S4 exists.

A careful check on the existence of solutions and their stability conditions indicates that the ða1; a2Þ
parameter space can be divided into four regions. The boundaries of these regions are defined by four critical
lines, namely B1, B2, B3 and B4, which are derived from Eqs. (63)–(65). These critical lines are determined by

B1 : a2 ¼ �0:323496a1; a140,

B2 : a2 ¼ �3:27483a1; a1o0,

B3 : a2 ¼ �4:06138a1; a140,

B4 : a2 ¼ �5:90097a1; a140. ð67Þ

The critical lines of bifurcations are illustrated in Fig. 2. A stable solution of S1 exists in the region between
the lines B1 and B2. Crossing these two critical lines leads to solutions S2 and S3, respectively, which bifurcate
from solution S1 via the appearance of a zero eigenvalue. A stable solution of S2 exists in the region between
the lines B2 and B4, and a stable solution of S3 exists in the region between two lines B1 and B3. Along the
critical line B3, a secondary Hopf bifurcation solution with frequency oH1 takes place from solution S3, which
leads to the 2D torus solution given by Eq. (62). Similarly, a secondary Hopf bifurcation solution with
frequency oH2 occurs from solution S2 along the critical line B4, which gives rise to a 2D torus solution.

The analytical predictions can be easily validated by the numerical results. By choosing a point in the
parameter space as ða1; a2Þ ¼ ð0:001; 0:1Þ, which is located in the stable region for solution S1. The numerical
solution of integration of Eq. (3) is shown in Fig. 3a. The trajectory starting from the initial conditions
ð0:5;�0:5Þ asymptotically converges to the origin (i.e., solution S1). Fig. 3b shows the trajectory of solution
S2, for the parameters located at ða1; a2Þ ¼ ð�0:001;�0:0035Þ. The amplitude and frequency of solution S2 are
found from Eq. (64) to be r1 ¼ 0:1148 and oH1 ¼ 7:00955. Thus, the first-order approximate solution of S2
can be written in terms of the original variables as

x ¼ 0:1148 cosð1:2829tÞ.

The results of numerical integration of Eq. (3) suggest that the amplitude and frequency of the periodic
solution are 0.13612 and 1.28282, which indicate the first-order approximate solution gives a reasonable
prediction.
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Fig. 2. Bifurcation diagram in the perturbation parameters ða1; a2Þ plane for the nonresonant co-dimension two bifurcation of Hopf–Hopf

interactions.
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When ða1; a2Þ ¼ ð0:001;�0:0035Þ, solution S3 is obtained, as shown in Fig. 3c. It is easy to find from Eq. (61)
that the amplitude and frequency of solution S3 are r2 ¼ 0:07969 and oH2 ¼ 3:918. Thus the first-order
approximate solution of S3 may be obtained in terms of the original variables as

x ¼ 0:079699 cosð0:7171tÞ.

The results of numerical integration of Eq. (3) show that the amplitude and frequency of the periodic solution
are 0.07719 and 0.7156, which imply the analytical predictions agree well with the numerical solutions.

A numerical solution for a quasi-periodic motion on a 2D torus (that is solution S4), as shown in Fig. 3d, is
obtained by choosing the perturbation parameters as ða1; a2Þ ¼ ð0:001;�0:0053Þ, which is located in the region
bounded by the critical lines B3 and B4. The two frequencies of solution S4 found by the numerical integration
are 1.2848 and 0.71815. The analytical results for the frequencies are 1.28309 and 0.71783, which present a
prediction close to the numerical results. It is found from Eq. (63) that the amplitudes of solution S4 are
0.05865 and 0.0494, while the numerical integration of Eq. (3) gives the amplitudes of the 2D solution as
0.0544 and 0.0415, respectively. It can be concluded that the analytical predictions of the amplitudes and
frequencies are good representatives of the numerical results.

6. Summary and discussion

A controlled van der Pol–Duffing oscillator with time delay involved in the nonlinear feedback control has
been studied in detail to explore a rich dynamic behaviour of the system in the vicinity of nonresonant Hopf
bifurcations. The system may exhibit the initial equilibrium solution, periodic solutions with the frequencies of
the first and second Hopf bifurcations, quasi-periodic solutions on 2D torus, depending on the dummy
unfolding parameters and nonlinear terms. Numerical results have been given to illustrate an interaction of
supercritical–supercritical Hopf bifurcations occurring in a specific system.

In the present paper, the behaviour of nonresonant Hopf bifurcations has been investigated for the
corresponding autonomous system in which no external excitations are involved (that is by letting e ¼ 0 in
Eq. (1)). The forced response of the controlled system with time delays has received less attention in the
available literature. The characterization of the forced response of the controlled system has practical
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Fig. 3. Time trajectories and phase portraits of solutions of the controlled system in the neighbourhood of the nonresonant co-dimension

two bifurcation of Hopf–Hopf interactions: (a) solution S1, (b) solution S2, (c) solution S3, and (d) solution S4.
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significance, as many physical systems are often subjected to external driving forces. When an external
excitation is presented in the controlled system involving time delay, an important technical issue that needs to
be addressed is the interaction of the external excitation and the behaviour of the corresponding autonomous
system that results from a nonresonant Hopf bifurcation. Such an analysis will be the subject of future
research. It is conjectured that the non-autonomous system may exhibit periodic and quasi-periodic as well as
chaotic motions. Some types of resonances including primary, super- and sub-harmonic resonances, additive
and difference resonances will appear in the forced response of the controlled system, when the frequency of
the external excitation and the frequencies of Hopf bifurcations satisfy a certain relationship.
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